
Machine Learning with Applications 21 (2025) 100696

A
2

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

Feature engineering through two-level genetic algorithm
Aditi Gulati a, Armin Felahatpisheh b, Camilo E. Valderrama b,c ,∗

a Computer Science and Engineering Department, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
b Department of Applied Computer Science, University of Winnipeg, 515 Portage Avenue, Winnipeg, R3B 2E9, MB, Canada
c Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6, AB, Canada

A R T I C L E I N F O

Keywords:
Feature engineering
Multi-objective genetic algorithms
Ensemble learning
Machine learning
Feature selection
Model interpretability

 A B S T R A C T

Deep learning models are widely used for their high predictive performance, but often lack interpretability.
Traditional machine learning methods, such as logistic regression and ensemble models, offer greater inter-
pretability but typically have lower predictive capacity. Feature engineering can enhance the performance of
interpretable models by identifying features that optimize classification. However, existing feature engineering
methods face limitations: (1) they usually do not apply non-linear transformations to features, ignoring the
benefits of non-linear spaces; (2) they usually perform feature selection only once, failing to reduce uncertainty
through repeated experiments; and (3) traditional methods like minimum redundancy maximum relevance
(mRMR) require additional hyperparameters to define the number of selected features. To address these issues,
this study proposed a hierarchical two-level feature engineering approach. In the first level, relevant features
were identified using multiple bootstrapped training sets. For each training set, the features were expanded
using seven non-linear transformation functions, and the minimum feature set maximizing ensemble model
performance was selected using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In the second
level, candidate feature sets were aggregated using two strategies. We evaluated our approach on twelve
datasets from various fields, achieving an average F1 score improvement of 1.5% while reducing the feature
set size by 54.5%. Moreover, our approach outperformed or matched traditional filter-based methods. Our
approach is available through a Python library (feature-gen), enabling others to benefit from this tool. This
study highlights the utility of evolutionary algorithms to generate feature sets that enhance the performance
of interpretable machine learning models.
1. Introduction

Data-driven applications are ubiquitous in various fields, including
critical areas such as military defense, healthcare, and banking. This
widespread use of data-driven approaches is possible due to advances
in machine learning and artificial intelligence, which allow learning
from data sets with minimal human involvement. Specifically, deep
learning has become the preferred option for data-driven systems due to
their ability to produce accurate predictions. However, although deep
learning models can achieve high performance in prediction tasks, most
cannot explain their predictions, making the detection of untrustwor-
thy, unreliable, unethical, and biased predictions challenging (Arrieta
et al., 2020).

An alternative approach to provide more interpretation is to use
classical machine learning models, such as logistic regression, decision
trees, or rule-based, which can explain the rationale behind their
predictions. However, the problem with using these simpler machine

∗ Corresponding author at: Department of Applied Computer Science, University of Winnipeg, 515 Portage Avenue, Winnipeg, R3B 2E9, MB, Canada.
E-mail addresses: aditi021btcse21@igdtuw.ac.in (A. Gulati), felahatpisheh-a@webmail.uwinnipeg.ca (A. Felahatpisheh), c.valderrama@uwinnipeg.ca

(C.E. Valderrama).

learning models is that they usually achieve a lower performance than
deep learning models (Aceves-Fernandez, 2020). To address this disad-
vantage, additional tasks can be performed to increase the performance
of these machine learning models. In particular, feature engineering, a
task relegated after the emergence of deep learning, can improve the
performance of machine learning models (Nargesian et al., 2017).

Feature engineering involves selecting, creating, or transforming
features to improve the accuracy of the model. This process requires
domain knowledge to define a set of candidate features, which are
manually tested in a trial-and-error approach. As this trial-and-error
approach is both challenging and time-consuming, feature engineering
is not always included in the preprocessing steps for building machine
learning models (Khurana, 2018).

Given the benefits but also the challenges of performing feature
engineering manually, it is worth exploring automated approaches
to select and produce relevant features. These automated approaches
https://doi.org/10.1016/j.mlwa.2025.100696
Received 20 April 2025; Received in revised form 10 June 2025; Accepted 21 June
vailable online 4 July 2025
666-8270/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/mlwa
https://www.elsevier.com/locate/mlwa
https://orcid.org/0000-0001-5333-8265
mailto:aditi021btcse21@igdtuw.ac.in
mailto:felahatpisheh-a@webmail.uwinnipeg.ca
mailto:c.valderrama@uwinnipeg.ca
https://doi.org/10.1016/j.mlwa.2025.100696
https://doi.org/10.1016/j.mlwa.2025.100696
http://creativecommons.org/licenses/by/4.0/

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
require exploring a set of features to derive or select a set of features
that maximize predictive performance. A common practice for this is to
use heuristic methods that explore combinations of features and select
those with higher predictive performance.

Among heuristic approaches, filter-based feature selection methods
are the most widely used. These methods evaluate the relationship
between each feature and the response variable, often through corre-
lation analysis or hypothesis testing. However, they do not account for
potential interactions or combinations of features. Additionally, users
must pre-define the number of features to select, a task that can be chal-
lenging without prior knowledge. This limitation often necessitates tun-
ing extra hyperparameters, which further exacerbates computational
complexity and increases the number of required operations.

An alternative to filter-based feature selection is genetic algorithms
(GAs), which allow for exploring feature combinations while eliminat-
ing the need to pre-define the number of features to select (Li et al.,
2017; Zhang & Yang, 2008). Additionally, GAs can simultaneously
optimize multiple objectives, making them particularly valuable for
producing feature sets that not only maximize predictive performance,
but also minimize the number of selected features (Rostami et al.,
2021; Wang et al., 2020). This latter property is especially valuable,
as reducing the feature set facilitates understanding how input vari-
ables influence predictions, thereby improving the interpretability and
explainability of the model outputs (Campagner & Cabitza, 2020).

Previous studies have highlighted the potential of GAs for feature
engineering, emphasizing their ability to optimize multiple objectives,
such as maximizing classification performance while minimizing the
number of selected features. However, previous studies face some
limitations. Many approaches have been tested primarily on small to
moderately sized datasets, limiting their generalizability across diverse
domains and larger datasets. Moreover, prior research has ignored
the use of statistical techniques, such as bootstrap resampling, to ex-
plore diverse alternative solutions and identify consistent features.
Additionally, the use of non-linear transformations to improve predic-
tive performance has been largely unexplored. Given the success of
non-linear transformations in deep learning, integrating similar strate-
gies into feature engineering for traditional machine learning models
holds promise for improved performance. Therefore, further research
is needed to develop GA-based feature engineering approaches that in-
corporate non-linear transformations, use robust statistical techniques,
and evaluate their effectiveness across extensive and diverse datasets.

In this study, we advance this field by introducing a hierarchical
feature engineering algorithm based on multi-objective genetic algo-
rithms (GAs). Our approach employs bootstrap sampling to identify
and select robust and consistent features across diverse training sam-
ples. Additionally, it incorporates non-linear transformations, including
logarithmic, cubic, and sigmoid functions, to enhance predictive per-
formance. To balance accuracy and interpretability, we use Sorting
Genetic Algorithm II (NSGA-II) (Deb et al., 2002) to simultaneously
maximize classification performance and minimize the feature set size.
Overall, the main contributions of our work are summarized as follows:

• Propose a hierarchical, multi-objective GA framework that incor-
porates bootstrap resampling and nonlinear feature transforma-
tions to produce a reduced feature set that enhances the perfor-
mance of interpretable machine learning models.

• Validate the proposed approach on 12 diverse datasets, demon-
strating its effectiveness across multiple domains.

• Provide an open-source Python (feature-gen) implementation to
promote adoption and reproducibility in practical machine learn-
ing workflows (Felahatpisheh et al., 2025).

2. Literature review

Previous studies have explored the potential of evolutionary algo-
rithms for feature engineering (Li et al., 2017; Zhang & Yang, 2008).
2
For example, Ali and Saeed (2023) proposed a hybrid method that com-
bines filter-based feature selection techniques, such as information gain
and Chi-squared, with GAs for selecting features in cancer classification
using high-dimensional microarray datasets. While their method im-
proved classification accuracy, its focus on specific domains like bioin-
formatics limits its applicability to other types of data. Similarly, Shi
and Saad (2023) incorporated GAs within AutoML frameworks to dy-
namically generate and select features through iterative optimization,
which involves transformation, combination, and synthesis. However,
this approach faces challenges related to computational complexity and
reliance on specific AutoML tools, restricting its scalability.

Other research has examined multi-objective optimization in fea-
ture engineering (Rostami et al., 2021; Wang et al., 2020), utilizing
evolutionary algorithms like the Non-dominated NSGA-II to balance
competing objectives. These studies illustrate that evolutionary algo-
rithms can effectively manage the trade-offs between model accuracy
and simplicity, leading to more efficient feature selection.

In addition to feature selection via GAs, an important aspect of iden-
tifying optimal feature subsets is leveraging machine learning models
to assess their predictive capacity. Kiziloz (2021) compared individual
machine learning classifiers with ensemble methods for feature selec-
tion and found that ensemble approaches yield more robust feature sets.
In particular, a meta-classifier composed of Logistic Regression, Sup-
port Vector Machines (SVM), Extreme Learning Machine (ELM), Naive
Bayes, and Decision Trees outperformed single-model approaches, such
as Gradient Boosting trees.

Building on these foundations, our study introduces a hierarchical
GA-based feature engineering framework. We use the NSGA to optimize
two objectives simultaneously: maximizing predictive performance and
minimizing the number of selected features, which enhances both in-
terpretability and efficiency. We utilize bootstrap resampling to explore
diverse feature combinations and evaluate candidate subsets through
ensemble modeling. Finally, we validate the generalizability of our
approach across twelve datasets spanning various domains.

3. Methodology

Fig. 1 shows the flowchart of our proposed GA-based feature en-
gineering method. This approach employed a hierarchical, two-level
algorithm. At the first level, feature selection was performed indepen-
dently on three bootstrap sample sets derived from the training dataset.
The decision to use three bootstrap sets was based on selecting the
smallest odd number greater than one, as odd numbers help resolve
ties when aggregating features. Additionally, using a small number of
bootstrap sets reduces computational demands, making the approach
more practical and resource-efficient.

At the second level, the selected features from these bootstrap sets
were aggregated to identify an optimal feature set. Two different strate-
gies were explored for the combination of the features. The following
subsections provide a detailed description of each component of the
micro-and-macro genetic algorithm feature selection approach.

3.1. Feature transformation

To explore non-linear transformations that could enhance the pre-
dictive performance of our models, we applied transformation tech-
niques to the numerical variables, using seven distinct techniques:
quadratic, cubic, square root, cubic root, logarithmic, sigmoid, and
tanh. These transformations address non-normally distributed features
by mapping them to a new space that facilitates classification. For
example, logarithmic transformations can be effective for skewed dis-
tributions, while quadratic and cubic transformations help capture
non-linear relationships. Moreover, similar to deep learning models,
the transformed features help capture non-linear data patterns, thereby
improving classification performance.

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
Fig. 1. Flowchart used to select the best features throughout the macro–micro genetic
algorithm.

Categorical variables (i.e., non-numerical variables) were trans-
formed using one-hot encoding. This encoding creates a separate col-
umn for each unique value of the categorical variable.

These transformations were concatenated to the original feature set.
Thus, the feature dimensionality was extended from |𝐹 | to |𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐 | +
7× |𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐 | +

∑

𝑓∈𝐹𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 |𝑉𝑓 |, where |𝐹 | was the original number of
features in the dataset, |𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐 | was the number of numerical features,
and |𝑉𝑓 | was the total number of categories of the 𝑓 th categorical
feature.

3.2. Training and test split

After applying the transformations, the dataset was split into train-
ing and test sets with an 80% to 20% ratio. The splitting process was
stratified to maintain the same class distribution in both the training
and test sets.
3
3.3. Bootstrap sampling

To create multiple subsets of the original dataset, we applied
bootstrap sampling on training data  to generate three independent
datasets 𝐷1, 𝐷2, and 𝐷3, as follows:



𝐷1

𝐷2

𝐷3

Bootstrap sampling is a statistical technique that generates new
datasets from the original data by random sampling with replacement,
ensuring diversity in each generated sample. We used this technique
to enable a more robust exploration of feature combinations by deriv-
ing candidate feature sets independently from each bootstrap sample.
These candidate sets were then aggregated in the second stage to
identify features that were consistently selected across all training
samples.

3.4. Micro-step genetic algorithm

In the first level, named the ‘micro’ step, we applied our GA-based
approach to each of three bootstrap sampling (𝐷1, 𝐷2, and 𝐷3). For
each of these bootstrap samples, the approach comprised four main
steps:

3.4.1. Step 1: Generate initial population
The first step involved generating the initial population, which

consisted of 40 individuals, also known as chromosomes. Each chromo-
some had a length equal to the total number of features and represented
a feature combination. The inclusion or exclusion of a feature was
indicated by a binary bit. For example, assuming a total of ten features,
the binary sequence ‘1000001111’ corresponded to a feature vector
containing the first and the last four features.

3.4.2. Step 2: Evaluation of the population
The second step used the NSGA-II algorithm to evaluate each of

the 40 chromosomes by considering two objectives. The first objective
was to maximize the prediction performance using F1 score, while the
second objective was to minimize the dimensionality of the feature set.
Specifically, for each of the 40 chromosomes, the bootstrap samples
were used to train an ensemble model using the features indicated
by the chromosome. Then, the samples contained in the training data
 but not in the bootstrap sampling (out-of-bag samples) were used
to compute the F1-score. The ensemble classifier was composed of
logistic regression, SVM, and XGBoost. The prediction of the models
was aggregated using majority voting. The dimensionality of the feature
set was quantified as the total number of ones in the chromosome,
representing the selected features.

3.4.3. Step 3: Genetic operations
In the third step, the NSGA-II performed a binary tournament

selection to choose pairs of chromosomes for crossover and mutation.
For crossover, parents with the better fitness scores were selected,
and a new child (chromosome) was created by using single-point and
multi-point crossover, where genes were swapped between parents to
produce new combinations. For mutation, two individuals were chosen
at random, and the one with the best fitness was selected as a parent.
This parent produced a new chromosome by randomly changing some
of its genes. The probability of mutation was predefined, ensuring
variety within the population.

3.4.4. Step 4: Generation iterations
The new generation was evaluated again by the NSGA-II following

the previously described procedure. This cycle was repeated for 30
generations. At the conclusion of the 30th generation, the chromosome
with the highest fitness score was selected as the optimal feature set
for the corresponding bootstrap sample.

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
3.4.5. Outcome: Micro-step candidate feature sets
After executing the genetic algorithm on each bootstrap sample, the

micro-step yielded three optimal feature sets [𝐹1, 𝐹2, 𝐹3], as:
𝐷1

𝐷2

𝐷3

𝐹1

𝐹2

𝐹3

3.5. Macro-step genetic algorithm

In the macro-step, the three feature sets obtained for each bootstrap
sample in the micro-step were combined to further identify an optimal
feature set, 𝐹𝑚𝑎𝑐𝑟𝑜. Two different strategies were considered for com-
bining these three feature sets (𝐹1, 𝐹2, and 𝐹3): bitwise union and the
bitwise median.

The union operator was applied for each feature across the three
feature sets, resulting in 1 when at least that feature was selected in
any of the feature sets. On the other hand, the median operator only
selected a feature if at least two feature sets selected that feature. The
union operator allowed more candidates to be kept from the feature
set, whereas the median focused more on selecting features that were
more consistent across all three candidate feature sets. Regardless of
the operator, the macro-step aggregated the micro outputs as:

𝐹1

𝐹2

𝐹3

𝐹macro 𝐹𝑍

Then, 𝐹𝑚𝑎𝑐𝑟𝑜 was passed through the same four steps of the genetic
algorithm with a new bootstrap sample to find the final feature set, 𝐹𝑧.
Like the micro-step, in the macro-step, the GA found 𝐹𝑧 by maximizing
the F1 score and minimizing the dimensionality of the final feature set.

3.6. Train final model

The optimal feature set 𝐹𝑍 , identified by the micro–macro hierar-
chical algorithm, was used to train a final ensemble model using the
training dataset. This final model was then evaluated on the test data,
which had been kept separate during the micro–macro steps.

4. Experiments

To evaluate the performance of our method, we conducted ex-
periments on twelve different datasets. We compared our proposed
GA-based feature selection approach with three widely used filter meth-
ods: chi-square, mutual information, and mRMR. To promote adoption
and reproducibility in practical machine learning applications, we have
also made our GA-based method available as an open-source Python
library, feature-gen (Felahatpisheh et al., 2025).

4.1. Datasets

Table 1 presents the datasets used in this study, spanning diverse
domains such as healthcare, finance, video games, and biology. These
datasets include both binary and multi-class classification scenarios,
with varying numbers of features, instances, and class distributions. The
diversity of these datasets allows for a comprehensive evaluation of the
NSGA-II algorithm to balance our two objectives: maximizing classifi-
cation performance while minimizing the feature set size. Furthermore,
this varied dataset collection provided a robust framework for assessing
the algorithm’s scalability, adaptability, and generalizability across
different contexts.

For all datasets, rows with missing or undefined values were re-
moved to maintain data quality and avoid errors in processing. Addi-
tionally, we dropped rows with positive and negative infinity values.
4
Table 1
Details of the datasets used in the experiments.
 Dataset Dataset ID Number of

features
Number of
classes

Number
of
instances

 Covertype CT 54 7 581,012
 Mushrooms MR 22 2 8124
 Spambase SB 57 2 4601
 Nursery NU 8 5 12,960
 Connect-4 opening C4 42 3 67,557
 Waveform WF 21 3 5000
 Financial FI 3 2 17,108
 Pima indian
diabetes

PM 8 2 768

 Breast cancer BC 9 2 699
 Ionosphere IO 34 2 351
 Wisconsin breast
cancer

WBC 30 2 569

 Musk (Version 2) MU 168 2 6598

4.2. Micro–macro approach performance

For each dataset, we compared the performance obtained using the
original feature set with that provided by our micro–macro algorithm.
The only transformation applied to the original feature set was one-hot
encoding for categorical variables, as machine learning models require
numerical inputs. To evaluate performance, we used accuracy and F1
score, with the latter providing a less biased metric for imbalanced
data. Additionally, we measured feature reduction by comparing the
original and final feature sets. This evaluation was conducted using the
two macro-step strategies: the union and median operators.

4.2.1. Comparison with filter feature selection methods
We also compared our macro–micro method with three common

filter feature selection methods. These three methods were chi-square,
mutual information, and mRMR methods. To ensure consistency and a
fair comparison, we trained an ensemble model for each dataset using
the same training set used for the macro–micro approach. Moreover,
similar to the original dataset, the only transformation applied in the
filter-based method was one-hot encoding for the categorical variables.
The 20%, 30%, and 50% top features provided by the chi-square,
mutual information, and mRMR were selected, and the final accuracy
was calculated on the test set.

4.3. The feature-gen library

The micro–macro approach was implemented in a publicly acces-
sible library named feature-gen. The feature-gen library is a Python-
based tool that simplifies feature engineering for classification tasks.
With a user-friendly API, it enables users to define their dataset, target
column, and desired ensemble methods while providing full control
over configuration parameters such as the number of generations,
population size, and optimization settings. The feature-gen library is
available on the PyPI repository (Felahatpisheh et al., 2025).

5. Results

This section presents the results obtained from evaluating our
Micro–Macro Approach on twelve datasets (see Table 1). The most
frequently selected feature transformations by the approach are also
reported. Finally, a comparison with traditional filter-based feature
selection methods is provided.

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
Fig. 2. Trade-off between F1 score and the number of feature variations for the union operator (blue line) and median operator (red line).
Table 2
Performance of the ensemble model composed of logistic regression, SVM, and XGBoost
using all the original features on the twelve datasets. For each dataset, accuracy, F1
score, and feature count are reported. Categorical features were transformed using one-
hot encoding.
 Dataset Train samples Test samples Accuracy F1 score No. of features
 CT 464,809 116,203 77.2 52.2 54
 MR 6499 1625 55.1 47.4 112
 SB 3680 921 94.1 93.8 57
 NU 9823 2456 94.1 74.4 27
 C4 54,045 13,512 78.7 54.2 126
 WF 4000 1000 83.9 83.8 21
 FI 8000 2000 97.3 69.7 3
 PM 614 154 63.6 59.4 1262
 BC 559 140 96.4 96.1 20
 IO 280 71 91.5 90.4 34
 WBC 455 114 98.2 98.1 31
 MU 5278 1320 99.1 98.2 6866
 Average 46,504 11,626 85.8 76.5 717.8

5.1. Micro–macro approach performance

Table 2 presents the performance of the ensemble model using the
original feature sets, while Tables 3 and 4 show the results of the micro–
macro approach with the union and median operators, respectively.
With the union operator, the accuracy and F1 score improved by
1.4% and 1.5%, respectively, across the 12 datasets. However, this
improvement came at the cost of a 2.1% increase in average feature
dimensionality. In contrast, the median operator not only achieved
a slightly higher average predictive performance increase (1.6%) but
also significantly reduced the average feature dimensionality by 54.5%.
This highlights the median operator’s ability to balance predictive
performance and feature reduction effectively.

Fig. 2 shows the relationship between the F1 score and the number
of feature variations achieved by the micro–macro approach. Both
methods exhibited a positive trend, showing that an increase in the
number of features increased the F1 score. However, the trend line
indicates that reducing the number of features by 1% to 70% did not
significantly affect the F1 score. In fact, within this range, the F1 score
variation was positive for most of the tested datasets.

5.1.1. Feature transformations
Tables 5 and 6 present the percentage of features selected for each

transformation. For the union operator, the logarithmic transformation
5
Fig. 3. Average rankings across 12 datasets based on F1 scores, comparing the micro–
macro approaches (orange bars) with filter-based feature selection methods (blue bars),
including Chi-square, Mutual Information, and mRMR.

was the most frequently selected, followed by the cubic power and
sigmoid transformations. For the median operator, the quadratic power
transformation was the most effective, followed by the sigmoid and
cubic power transformations. For datasets containing only categorical
variables (FI, C4, PM, MR, and NU), no transformations were selected
as the transformations were only applied to numerical variables. The
datasets WBC, SB, and WF used the highest proportion of transformed
features, with less than 12% of the original features (NT) selected.

5.1.2. Comparison with traditional feature selection methods
Tables 7, 8, 9 present the accuracy and F1 score performance

across 12 datasets for the chi-square, mutual information, and mRMR
filtering methods, each selecting the top 20%, 30%, and 50% of the
features. All three methods achieved strong classification results, with
average accuracy exceeding 82% and F1 scores surpassing 72%. The
50th percentile consistently delivered the best performance, indicating
that retaining half of the features produced an optimal balance between
performance and dimensionality reduction.

Fig. 3 shows the average rankings based on F1 scores for the
micro–macro algorithm compared to nine filter-based feature selec-
tion methods. The micro–macro approach using the union operator
achieved the highest overall ranking across the 12 benchmark datasets.

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
Table 3
Performance of the GA-based hierarchical micro–macro approach across 12 datasets using the union operator
in the macro step and an ensemble model composed of logistic regression, SVM, and XGBoost. For each
dataset, accuracy, F1 score, and feature count are reported. The last three columns show variations compared
to the results obtained using the original features (Table 2).
 Dataset Micro-Macro, Union operator Accuracy F1 No. feature
 Accuracy F1 score No. features variation (%) variation(%) variation(%)
 CT 77.9 57.9 163 1.0 10.9 201.9
 MR 65.4 61.0 11 18.6 28.8 −90.2
 SB 94.7 94.4 108 0.6 0.7 89.5
 NU 92.5 85.1 10 −1.7 14.4 −63.0
 C4 76.7 51.5 36 −2.4 −4.9 −71.4
 WF 83.4 57.7 30 −0.6 −31.1 42.9
 FI 97.2 71.6 2 −0.10 2.69 −33.3
 PM 61.7 53.4 404 −3.1 −10.1 −68.0
 BC 97.1 96.9 15 0.7 0.8 −25.0
 IO 95.8 95.3 42 4.6 5.5 23.5
 WBC 97.4 97.1 60 −0.9 −1.0 93.5
 MU 99.7 99.4 1739 0.6 1.2 −74.7

 Average 86.6 76.8 218.3 1.4 1.5 2.1

Table 4
Performance of the GA-based hierarchical micro–macro approach across 12 datasets using the median
operator in the macro step and an ensemble model composed of logistic regression, SVM, and XGBoost. For
each dataset, accuracy, F1 score, and feature count are reported. The last three columns show variations
compared to the results obtained using the original features (Table 2).
 Dataset Micro-Macro, Median operator Accuracy F1 No. feature
 Accuracy F1 score No. features variation (%) variation(%) variation(%)
 CT 77.8 56.4 62 0.8 8.0 14.8
 MR 63.8 52.9 9 15.6 11.7 −92.0
 SB 93.4 93.1 58 −0.8 0.8 1.8
 NU 92.3 84.9 10 −2.0 14.2 −63.0
 C4 76.7 51.5 36 −2.4 −4.9 −71.4
 WF 82.5 82.5 21 −1.7 −1.6 0.0
 FI 97.2 71.6 2 −0.1 2.7 −50.0
 PM 60.4 50.4 199 −5.1 −15.0 −84.2
 BC 95.7 95.2 5 −0.7 −0.9 −75.0
 IO 95.8 95.2 7 4.6 5.4 −79.4
 WBC 97.4 97.1 6 −0.9 −1.0 −80.6
 MU 99.7 99.4 1739 0.6 1.3 −74.7
 Average 86.0 77.5 179.5 0.7 1.6 −54.5
Table 5
Percentage of features selected by each of the seven transformations and the original
features (NT: no transformation) from the feature set produced by the micro–macro
approach using union operator. The last row shows the average across 12 datasets.
 Dataset Union operator for macro step
 Quadratic Cubic log Square root Cubic root tanh Sigmoid NT
 CT 9.2 14.7 15.3 11.0 14.1 11.7 11.7 12.3
 MR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 SB 13.0 9.3 13.9 13.0 13.0 17.6 9.3 11.1
 NU 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 C4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 WF 3.3 6.7 20.0 13.3 20.0 13.3 13.3 10.0
 FI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 BC 20.0 13.3 6.7 6.7 0.0 6.7 13.3 33.3
 IO 9.5 11.9 21.4 9.5 11.9 9.5 16.7 9.5
 WBC 11.7 21.7 11.7 15.0 6.7 15.0 10.0 8.3
 MU 2.5 2.5 2.4 2.5 2.6 2.2 1.8 83.4
 Average 5.8 6.7 7.6 5.9 5.7 6.3 6.3 55.7

Similarly, the variant employing the median operator performed com-
petitively, securing third place among all methods evaluated. Among
the filter-based techniques, the mRMR method, when selecting the top
50% of features, demonstrated the best performance in its category,
ranking second overall.

6. Discussion

Our results indicate that the micro–macro genetic algorithm ap-
proach can find a feature set that maximizes classification performance
6
Table 6
Percentage of features selected by each of the seven transformations and the original
features (NT: no transformation) from the feature set produced by the micro–macro
approach using median operator. The last row shows the average across 12 datasets.
 Dataset Median operator for macro step
 Quadratic Cubic log Square root Cubic root tanh Sigmoid NT
 CT 16.1 6.5 16.1 14.5 11.3 06.5 17.7 11.3
 MR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 SB 13.8 13.8 20.7 19.0 12.1 10.3 5.2 5.2
 NU 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 C4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 WF 9.5 14.3 0.0 9.5 4.8 28.6 23.8 9.5
 FI 50.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0
 PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
 BC 20.0 20.0 0.0 0.0 0.0 0.0 0.0 60.0
 IO 28.6 14.3 0.0 0.0 14.3 14.3 14.3 14.3
 WBC 16.7 16.7 0.0 16.7 16.7 0.0 33.3 0.0
 MU 2.5 2.5 2.4 2.5 2.6 2.2 1.8 83.4
 Average 13.1 7.3 3.3 5.2 5.1 5.2 8.0 52.8

while minimizing the number of selected features. By employing a boot-
strapping strategy, the approach can simultaneously identify candidate
feature sets across different samples through the genetic algorithm,
which are subsequently aggregated and refined during the macro step.
Notably, our approach can enhance F1 score performance, which is a
critical indicator for handling imbalanced datasets, tackling a prevalent
challenge in machine learning. This improvement occurs alongside a
reduction in the number of features, thereby supporting interpretabil-
ity, as a smaller feature set makes it easier to understand how input
variables influence predictions.

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
Table 7
Accuracy and F1 score performance across the 12 datasets for the ANOVA F-value
filtering method, selecting the top 20%, 30%, and 50% of the features.
 Dataset ANOVA F-value
 Percentile 20 Percentile 30 Percentile 50
 Accuracy F1 Accuracy F1 Accuracy F1
 CT 70.9 47.1 73.0 45.1 75.6 50.2
 MR 64.1 56.2 64.8 62.4 59.9 52.6
 SB 89.3 88.6 89.1 88.5 91.5 91.1
 NU 81.8 62.0 86.6 65.8 91.5 83.9
 C4 74.6 47.7 75.4 49.1 77.5 52.6
 WF 66.0 64.9 70.4 69.5 78.0 77.8
 FI 97.2 68.2 97.3 70.6 97.2 71.6
 PM 58.4 48.4 64.3 58.6 67.5 64.4
 BC 95.0 94.5 95.0 94.5 95.7 95.3
 IO 97.2 96.9 94.4 93.8 98.6 98.4
 WBC 96.5 96.1 97.4 97.2 97.4 97.1
 MU 97.7 95.3 98.3 96.5 98.7 97.4
 Average 82.4 72.2 83.8 74.3 85.8 77.7

Table 8
Accuracy and F1 score performance across the 12 datasets for the mutual information
filtering method, selecting the top 20%, 30%, and 50% of the features.
 Dataset Mutual information
 Percentile 20 Percentile 30 Percentile 50
 Accuracy F1 Accuracy F1 Accuracy F1
 CT 72.5 40.9 73.9 46.1 77.2 50.5
 MR 64.9 56.1 63.1 57.5 58.7 51.7
 SB 92.2 91.8 92.2 91.6 91.9 91.3
 NU 81.7 61.9 86.6 65.8 86.9 69.6
 C4 73.5 47.0 74.6 47.9 77.5 52.5
 WF 65.9 65.0 70.4 69.5 79.3 79.3
 FI 97.2 68.2 97.2 68.2 97.3 69.7
 PM 64.3 55.9 63.6 52.7 63.0 56.6
 BC 95.0 94.5 95.7 95.3 95.7 95.3
 IO 91.5 90.4 94.4 93.8 97.2 96.9
 WBC 96.5 96.1 97.4 97.2 97.4 97.1
 MU 99.3 98.7 99.3 99.1 99.9 99.9
 Average 82.9 72.2 84.0 73.7 85.2 75.9

Table 9
Accuracy and F1 score performance across the 12 datasets for the mRMR filtering
method, selecting the top 20%, 30%, and 50% of the features.
 Dataset mRMR

 Percentile 20 Percentile 30 Percentile 50
 Accuracy F1 Accuracy F1 Accuracy F1
 CT 72.3 42.0 74.0 47.0 75.9 51.4
 MR 63.7 61.8 62.3 56.9 58.8 51.2
 SB 92.3 91.9 92.9 92.6 93.6 93.2
 NU 80.8 61.3 85.2 64.7 91.4 70.9
 C4 71.8 44.4 74.4 47.5 75.9 50.5
 WF 76.8 76.7 79.2 79.1 80.9 80.9
 FI 97.2 70.7 97.2 70.7 97.2 71.6
 PM 60.4 43.0 63.6 52.7 63.0 60.7
 BC 95.7 95.3 95.0 94.5 95.7 95.3
 IO 97.2 96.9 94.4 93.8 97.2 96.9
 WBC 97.4 97.1 95.6 95.2 97.4 97.1
 MU 98.9 97.9 99.5 99.1 99.6 99.3
 Average 82.9 72.2 84.0 73.7 85.2 75.9

The choice between union and median operator for the aggregation
in the macro-step offers a trade-off between performance boost and
feature reduction. The union operator retains more features, leading to
a higher performance score but a lower feature reduction. In fact, using
the union operator as the macro step increased the average number of
features across the datasets. On the other hand, the median operation
ensures the consideration of only those features shown to be relevant
in at least two of the bootstrap samples of the micro-step, thus ensuring
the inclusion of critical features in the last step. This selective inclusion
7
allowed for a reduction in the number of features but slightly decreased
the performance score compared to the union operator.

As a practical contribution, our results suggest that applying trans-
formations such as sigmoid and quadratic improves model perfor-
mance. The reason behind this improvement is the capacity of the
transformations to capture data relationships that are not noticeable in
the original feature space. This is particularly true for complex datasets,
where such transformations can better represent nonlinear patterns and
interactions, leading to a higher predictive score.

Regarding filter-based feature selection methods, the micro–macro
genetic algorithm approach demonstrated superior performance in
most cases. The enhanced performance of our proposed approach can
be attributed to its ability to effectively balance competing objectives,
making it well-suited for diverse datasets and domains. Moreover, un-
like traditional filtering methods, in which the user needs to specify the
percentile number of features to select, our approach can optimize this
by itself, avoiding the necessity of tuning additional hyperparameters
during the training process.

Overall, the proposed hierarchical genetic algorithm framework
contributes by offering an approach that automates feature selection
and engineering. The results indicate that the framework delivers com-
parable or superior performance to traditional feature selection meth-
ods by effectively integrating genetic algorithms, ensemble learning,
and feature transformations. Additionally, the reduced feature set sup-
ports machine learning model interpretability, addressing the growing
need for explainability in predictive modeling.

6.1. Comparison with previous works

Similar to previous studies (Li et al., 2017; Shi & Saad, 2023; Zhang
& Yang, 2008), our approach highlights the role of feature transforma-
tions in capturing nonlinear patterns. However, unlike previous studies,
we showed the effectiveness of these feature transformations for multi-
objective optimization settings. Our work also supports the findings
of Kiziloz (2021), demonstrating that leveraging ensemble methods is
more reliable for feature selection than traditional filtering methods.
Specifically, the use of ensemble learning with Logistic Regression,
SVM, and XGBoost ensures broad applicability across linear, boundary-
based, and nonlinear problems. However, in contrast to Kiziloz (2021),
we extended the approach by incorporating an ensemble classifier into
a two-level hierarchical algorithm to optimize two goals: performance
and feature reduction. This extension enables the reduction of the
feature set’s dimensionality without sacrificing accuracy.

In comparison to Rostami et al. (2021) and Wang et al. (2020) that
also used the NSGA-II to optimize two objectives, we extended their
work by performing the procedure multiple times through bootstrap-
ping. This statistical technique allowed us to expose the NSGA-II to
different configurations of the training data, thus exploring more dif-
ferent feature combinations. These combinations were then combined
(‘macro-step’), thus allowing the exploitation of these candidate feature
sets to derive an optimal feature set.

To the best of our knowledge, our approach is the first to expand the
original with nonlinear transformations, thus enabling the projection
of the features on alternative spaces in which class prediction can
be enhanced. Indeed, our results indicated that the optimal solution
generated by our macro–micro approach selected, on average, 45% of
nonlinear transformed features (see Table 5). Thus, this finding suggests
that incorporating nonlinear features into traditional machine learning
models can significantly enhance their performance.

6.2. Limitations and future work

We note that our micro–macro genetic algorithm was implemented
specifically for classification problems using tabular data. We did not
evaluate its applicability to regression problems and non-structured

A. Gulati et al. Machine Learning with Applications 21 (2025) 100696
data, such as text, images, or signals. However, the methodology pre-
sented here could be adapted to other types of data and regression tasks
by modifying the objectives of the NSGA-II algorithm. Future research
should explore the potential of the micro–macro genetic algorithm for
regression problems to evaluate its feasibility and effectiveness.

Additionally, we note that the iterative nature of the micro–macro
genetic algorithm requires computational resources, which may limit
its scalability to very large datasets. This condition could be addressed
by extending the computational framework to support distributed sys-
tems. The distributed system would introduce load balancing and task
scheduling mechanisms, ensuring efficient utilization of computational
resources.

As feature distributions vary across datasets, we recognize that a
predefined set of seven transformations may not be optimal for all
scenarios. Additionally, we applied transformations only to numerical
features, without exploring transformation options for categorical fea-
tures. Future work should explore transformation methods that adapt
to the unique characteristics of each dataset, potentially developing
mechanisms to analyze feature distributions and relationships to select
the most appropriate transformation.

7. Conclusion

This paper presents a two-level hierarchical genetic algorithm for
feature selection, aiming to maximize classification performance while
minimizing the number of selected features. This proposed method
introduces three key contributions: (1) the integration of repeated
bootstrapping with feature transformations to enhance robustness and
solution diversity, (2) the application of NSGA-II for effective multi-
objective optimization, balancing accuracy and interpretability, and (3)
the provision of an open-source Python library (Felahatpisheh et al.,
2025), enabling reproducibility and practical application in real-world
scenarios.

Our approach achieves performance comparable to or surpassing
traditional feature selection techniques, highlighting its robustness and
versatility as a feature engineering tool. However, the computational
costs associated with bootstrapping and genetic operations remain a
constraint, particularly for large-scale or extremely high-dimensional
datasets. To address these challenges, future research should explore
alternative evolutionary operators to enhance efficiency, investigate
real-time feature adaptation for streaming contexts, and further op-
timize scalability. Additionally, benchmarking the algorithm across
diverse domains will help solidify its position within the field and guide
subsequent advancements.

CRediT authorship contribution statement

Aditi Gulati: Methodology, Writing – original draft. Armin Fela-
hatpisheh: Conceptualization, Methodology, Data curation, Software.
Camilo E. Valderrama: Conceptualization, Writing – review & editing,
Supervision, Funding acquisition.
8
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

AG was supported by a Mitacs Globalink (Project ID: 32844).

Data availability

Data will be made available on request.

References

Aceves-Fernandez, M. A. (2020). Advances and Applications in Deep Learning. IntechOpen,
http://dx.doi.org/10.5772/intechopen.87786.

Ali, W., & Saeed, F. (2023). Hybrid filter and genetic algorithm-based feature selection
for improving cancer classification in high-dimensional microarray data. Processes,
11(2), http://dx.doi.org/10.3390/pr11020562.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,
García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020).
Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion, 58, 82–115. http://dx.doi.
org/10.1016/j.inffus.2019.12.012.

Campagner, A., & Cabitza, F. (2020). Back to the feature: A neural-symbolic perspective
on explainable AI. In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl
(Eds.), Machine learning and knowledge extraction (pp. 39–55). Springer International
Publishing, ISBN: 978-3-030-57321-8.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2), 182–197. http://dx.doi.org/10.1109/4235.996017.

Felahatpisheh, A., Gulati, A., & Valderrama, C. E. (2025). Feature-gen. URL: https:
//pypi.org/project/feature-gen/ (Accessed 13 January 2025).

Khurana, U. (2018). Transformation-based feature engineering in supervised learning:
Strategies toward automation. In Feature engineering for machine learning and data
analytics (pp. 221–243). CRC Press.

Kiziloz, H. E. (2021). Classifier ensemble methods in feature selection. Neurocomputing,
419, 97–107. http://dx.doi.org/10.1016/j.neucom.2020.07.113.

Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications.
Knowledge and Information Systems, 53(3), 551–577. http://dx.doi.org/10.1007/
s10115-017-1059-8.

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B., & Turaga, D. (2017).
Learning feature engineering for classification. In Proceedings of the twenty-sixth
international joint conference on artificial intelligence, IJCAI-17 (pp. 2529–2535).
http://dx.doi.org/10.24963/ijcai.2017/352.

Rostami, M., Berahmand, K., & Forouzandeh, S. (2021). A novel community detection
based genetic algorithm for feature selection. Journal of Big Data, 8(1), 2. http:
//dx.doi.org/10.1186/s40537-020-00398-3.

Shi, K., & Saad, S. (2023). Automated feature engineering for automl using genetic
algorithms. In The 20th international conference on security and cryptography (pp.
450–459).

Wang, H., He, C., & Li, Z. (2020). A new ensemble feature selection approach based
on genetic algorithm. Soft Computing, 24(20), 15811–15820. http://dx.doi.org/10.
1007/s00500-020-04911-x.

Zhang, Z., & Yang, P. (2008). An ensemble of classifiers with genetic algorithm-based
feature selection. Deakin University Journal Contribution, URL: https://hdl.handle.
net/10536/DRO/DU:30017964.

http://dx.doi.org/10.5772/intechopen.87786
http://dx.doi.org/10.3390/pr11020562
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb4
http://dx.doi.org/10.1109/4235.996017
https://pypi.org/project/feature-gen/
https://pypi.org/project/feature-gen/
https://pypi.org/project/feature-gen/
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb7
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb7
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb7
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb7
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb7
http://dx.doi.org/10.1016/j.neucom.2020.07.113
http://dx.doi.org/10.1007/s10115-017-1059-8
http://dx.doi.org/10.1007/s10115-017-1059-8
http://dx.doi.org/10.1007/s10115-017-1059-8
http://dx.doi.org/10.24963/ijcai.2017/352
http://dx.doi.org/10.1186/s40537-020-00398-3
http://dx.doi.org/10.1186/s40537-020-00398-3
http://dx.doi.org/10.1186/s40537-020-00398-3
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb12
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb12
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb12
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb12
http://refhub.elsevier.com/S2666-8270(25)00079-9/sb12
http://dx.doi.org/10.1007/s00500-020-04911-x
http://dx.doi.org/10.1007/s00500-020-04911-x
http://dx.doi.org/10.1007/s00500-020-04911-x
https://hdl.handle.net/10536/DRO/DU:30017964
https://hdl.handle.net/10536/DRO/DU:30017964
https://hdl.handle.net/10536/DRO/DU:30017964

	Feature engineering through two-level genetic algorithm
	Introduction
	Literature Review
	Methodology
	Feature Transformation
	Training and Test Split
	Bootstrap Sampling
	Micro-step Genetic Algorithm
	Step 1: Generate Initial Population
	Step 2: Evaluation of the Population
	Step 3: Genetic operations
	Step 4: Generation Iterations
	Outcome: Micro-step Candidate Feature Sets

	Macro-step Genetic Algorithm
	Train Final Model

	Experiments
	Datasets
	Micro–Macro Approach Performance
	Comparison with filter feature selection methods

	The Feature-Gen Library

	Results
	Micro–Macro Approach Performance
	Feature Transformations
	Comparison with Traditional Feature Selection Methods

	Discussion
	Comparison with Previous Works
	Limitations and Future Work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

