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 A B S T R A C T

Deep learning models are widely used for their high predictive performance, but often lack interpretability. 
Traditional machine learning methods, such as logistic regression and ensemble models, offer greater inter-
pretability but typically have lower predictive capacity. Feature engineering can enhance the performance of 
interpretable models by identifying features that optimize classification. However, existing feature engineering 
methods face limitations: (1) they usually do not apply non-linear transformations to features, ignoring the 
benefits of non-linear spaces; (2) they usually perform feature selection only once, failing to reduce uncertainty 
through repeated experiments; and (3) traditional methods like minimum redundancy maximum relevance 
(mRMR) require additional hyperparameters to define the number of selected features. To address these issues, 
this study proposed a hierarchical two-level feature engineering approach. In the first level, relevant features 
were identified using multiple bootstrapped training sets. For each training set, the features were expanded 
using seven non-linear transformation functions, and the minimum feature set maximizing ensemble model 
performance was selected using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In the second 
level, candidate feature sets were aggregated using two strategies. We evaluated our approach on twelve 
datasets from various fields, achieving an average F1 score improvement of 1.5% while reducing the feature 
set size by 54.5%. Moreover, our approach outperformed or matched traditional filter-based methods. Our 
approach is available through a Python library (feature-gen), enabling others to benefit from this tool. This 
study highlights the utility of evolutionary algorithms to generate feature sets that enhance the performance 
of interpretable machine learning models.
1. Introduction

Data-driven applications are ubiquitous in various fields, including 
critical areas such as military defense, healthcare, and banking. This 
widespread use of data-driven approaches is possible due to advances 
in machine learning and artificial intelligence, which allow learning 
from data sets with minimal human involvement. Specifically, deep 
learning has become the preferred option for data-driven systems due to 
their ability to produce accurate predictions. However, although deep 
learning models can achieve high performance in prediction tasks, most 
cannot explain their predictions, making the detection of untrustwor-
thy, unreliable, unethical, and biased predictions challenging (Arrieta 
et al., 2020).

An alternative approach to provide more interpretation is to use 
classical machine learning models, such as logistic regression, decision 
trees, or rule-based, which can explain the rationale behind their 
predictions. However, the problem with using these simpler machine 
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learning models is that they usually achieve a lower performance than 
deep learning models (Aceves-Fernandez, 2020). To address this disad-
vantage, additional tasks can be performed to increase the performance 
of these machine learning models. In particular, feature engineering, a 
task relegated after the emergence of deep learning, can improve the 
performance of machine learning models (Nargesian et al., 2017).

Feature engineering involves selecting, creating, or transforming 
features to improve the accuracy of the model. This process requires 
domain knowledge to define a set of candidate features, which are 
manually tested in a trial-and-error approach. As this trial-and-error 
approach is both challenging and time-consuming, feature engineering 
is not always included in the preprocessing steps for building machine 
learning models (Khurana, 2018).

Given the benefits but also the challenges of performing feature 
engineering manually, it is worth exploring automated approaches 
to select and produce relevant features. These automated approaches 
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require exploring a set of features to derive or select a set of features 
that maximize predictive performance. A common practice for this is to 
use heuristic methods that explore combinations of features and select 
those with higher predictive performance.

Among heuristic approaches, filter-based feature selection methods 
are the most widely used. These methods evaluate the relationship 
between each feature and the response variable, often through corre-
lation analysis or hypothesis testing. However, they do not account for 
potential interactions or combinations of features. Additionally, users 
must pre-define the number of features to select, a task that can be chal-
lenging without prior knowledge. This limitation often necessitates tun-
ing extra hyperparameters, which further exacerbates computational 
complexity and increases the number of required operations.

An alternative to filter-based feature selection is genetic algorithms 
(GAs), which allow for exploring feature combinations while eliminat-
ing the need to pre-define the number of features to select (Li et al., 
2017; Zhang & Yang, 2008). Additionally, GAs can simultaneously 
optimize multiple objectives, making them particularly valuable for 
producing feature sets that not only maximize predictive performance, 
but also minimize the number of selected features (Rostami et al., 
2021; Wang et al., 2020). This latter property is especially valuable, 
as reducing the feature set facilitates understanding how input vari-
ables influence predictions, thereby improving the interpretability and 
explainability of the model outputs (Campagner & Cabitza, 2020).

Previous studies have highlighted the potential of GAs for feature 
engineering, emphasizing their ability to optimize multiple objectives, 
such as maximizing classification performance while minimizing the 
number of selected features. However, previous studies face some 
limitations. Many approaches have been tested primarily on small to 
moderately sized datasets, limiting their generalizability across diverse 
domains and larger datasets. Moreover, prior research has ignored 
the use of statistical techniques, such as bootstrap resampling, to ex-
plore diverse alternative solutions and identify consistent features. 
Additionally, the use of non-linear transformations to improve predic-
tive performance has been largely unexplored. Given the success of 
non-linear transformations in deep learning, integrating similar strate-
gies into feature engineering for traditional machine learning models 
holds promise for improved performance. Therefore, further research 
is needed to develop GA-based feature engineering approaches that in-
corporate non-linear transformations, use robust statistical techniques, 
and evaluate their effectiveness across extensive and diverse datasets.

In this study, we advance this field by introducing a hierarchical 
feature engineering algorithm based on multi-objective genetic algo-
rithms (GAs). Our approach employs bootstrap sampling to identify 
and select robust and consistent features across diverse training sam-
ples. Additionally, it incorporates non-linear transformations, including 
logarithmic, cubic, and sigmoid functions, to enhance predictive per-
formance. To balance accuracy and interpretability, we use Sorting 
Genetic Algorithm II (NSGA-II) (Deb et al., 2002) to simultaneously 
maximize classification performance and minimize the feature set size. 
Overall, the main contributions of our work are summarized as follows:

• Propose a hierarchical, multi-objective GA framework that incor-
porates bootstrap resampling and nonlinear feature transforma-
tions to produce a reduced feature set that enhances the perfor-
mance of interpretable machine learning models.

• Validate the proposed approach on 12 diverse datasets, demon-
strating its effectiveness across multiple domains.

• Provide an open-source Python (feature-gen) implementation to 
promote adoption and reproducibility in practical machine learn-
ing workflows (Felahatpisheh et al., 2025).

2. Literature review

Previous studies have explored the potential of evolutionary algo-
rithms for feature engineering (Li et al., 2017; Zhang & Yang, 2008). 
2 
For example, Ali and Saeed (2023) proposed a hybrid method that com-
bines filter-based feature selection techniques, such as information gain 
and Chi-squared, with GAs for selecting features in cancer classification 
using high-dimensional microarray datasets. While their method im-
proved classification accuracy, its focus on specific domains like bioin-
formatics limits its applicability to other types of data. Similarly, Shi 
and Saad (2023) incorporated GAs within AutoML frameworks to dy-
namically generate and select features through iterative optimization, 
which involves transformation, combination, and synthesis. However, 
this approach faces challenges related to computational complexity and 
reliance on specific AutoML tools, restricting its scalability.

Other research has examined multi-objective optimization in fea-
ture engineering (Rostami et al., 2021; Wang et al., 2020), utilizing 
evolutionary algorithms like the Non-dominated NSGA-II to balance 
competing objectives. These studies illustrate that evolutionary algo-
rithms can effectively manage the trade-offs between model accuracy 
and simplicity, leading to more efficient feature selection.

In addition to feature selection via GAs, an important aspect of iden-
tifying optimal feature subsets is leveraging machine learning models 
to assess their predictive capacity. Kiziloz (2021) compared individual 
machine learning classifiers with ensemble methods for feature selec-
tion and found that ensemble approaches yield more robust feature sets. 
In particular, a meta-classifier composed of Logistic Regression, Sup-
port Vector Machines (SVM), Extreme Learning Machine (ELM), Naive 
Bayes, and Decision Trees outperformed single-model approaches, such 
as Gradient Boosting trees.

Building on these foundations, our study introduces a hierarchical 
GA-based feature engineering framework. We use the NSGA to optimize 
two objectives simultaneously: maximizing predictive performance and 
minimizing the number of selected features, which enhances both in-
terpretability and efficiency. We utilize bootstrap resampling to explore 
diverse feature combinations and evaluate candidate subsets through 
ensemble modeling. Finally, we validate the generalizability of our 
approach across twelve datasets spanning various domains.

3. Methodology

Fig.  1 shows the flowchart of our proposed GA-based feature en-
gineering method. This approach employed a hierarchical, two-level 
algorithm. At the first level, feature selection was performed indepen-
dently on three bootstrap sample sets derived from the training dataset. 
The decision to use three bootstrap sets was based on selecting the 
smallest odd number greater than one, as odd numbers help resolve 
ties when aggregating features. Additionally, using a small number of 
bootstrap sets reduces computational demands, making the approach 
more practical and resource-efficient.

At the second level, the selected features from these bootstrap sets 
were aggregated to identify an optimal feature set. Two different strate-
gies were explored for the combination of the features. The following 
subsections provide a detailed description of each component of the 
micro-and-macro genetic algorithm feature selection approach.

3.1. Feature transformation

To explore non-linear transformations that could enhance the pre-
dictive performance of our models, we applied transformation tech-
niques to the numerical variables, using seven distinct techniques: 
quadratic, cubic, square root, cubic root, logarithmic, sigmoid, and 
tanh. These transformations address non-normally distributed features 
by mapping them to a new space that facilitates classification. For 
example, logarithmic transformations can be effective for skewed dis-
tributions, while quadratic and cubic transformations help capture 
non-linear relationships. Moreover, similar to deep learning models, 
the transformed features help capture non-linear data patterns, thereby 
improving classification performance.
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Fig. 1. Flowchart used to select the best features throughout the macro–micro genetic 
algorithm.

Categorical variables (i.e., non-numerical variables) were trans-
formed using one-hot encoding. This encoding creates a separate col-
umn for each unique value of the categorical variable.

These transformations were concatenated to the original feature set. 
Thus, the feature dimensionality was extended from |𝐹 | to |𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐 | +
7× |𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐 | +

∑

𝑓∈𝐹𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 |𝑉𝑓 |, where |𝐹 | was the original number of 
features in the dataset, |𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐 | was the number of numerical features, 
and |𝑉𝑓 | was the total number of categories of the 𝑓 th categorical 
feature.

3.2. Training and test split

After applying the transformations, the dataset was split into train-
ing and test sets with an 80% to 20% ratio. The splitting process was 
stratified to maintain the same class distribution in both the training 
and test sets.
3 
3.3. Bootstrap sampling

To create multiple subsets of the original dataset, we applied 
bootstrap sampling on training data  to generate three independent 
datasets 𝐷1, 𝐷2, and 𝐷3, as follows:



𝐷1

𝐷2

𝐷3

Bootstrap sampling is a statistical technique that generates new 
datasets from the original data by random sampling with replacement, 
ensuring diversity in each generated sample. We used this technique 
to enable a more robust exploration of feature combinations by deriv-
ing candidate feature sets independently from each bootstrap sample. 
These candidate sets were then aggregated in the second stage to 
identify features that were consistently selected across all training 
samples.

3.4. Micro-step genetic algorithm

In the first level, named the ‘micro’ step, we applied our GA-based 
approach to each of three bootstrap sampling (𝐷1, 𝐷2, and 𝐷3). For 
each of these bootstrap samples, the approach comprised four main 
steps:

3.4.1. Step 1: Generate initial population
The first step involved generating the initial population, which 

consisted of 40 individuals, also known as chromosomes. Each chromo-
some had a length equal to the total number of features and represented 
a feature combination. The inclusion or exclusion of a feature was 
indicated by a binary bit. For example, assuming a total of ten features, 
the binary sequence ‘1000001111’ corresponded to a feature vector 
containing the first and the last four features.

3.4.2. Step 2: Evaluation of the population
The second step used the NSGA-II algorithm to evaluate each of 

the 40 chromosomes by considering two objectives. The first objective 
was to maximize the prediction performance using F1 score, while the 
second objective was to minimize the dimensionality of the feature set. 
Specifically, for each of the 40 chromosomes, the bootstrap samples 
were used to train an ensemble model using the features indicated 
by the chromosome. Then, the samples contained in the training data 
 but not in the bootstrap sampling (out-of-bag samples) were used 
to compute the F1-score. The ensemble classifier was composed of 
logistic regression, SVM, and XGBoost. The prediction of the models 
was aggregated using majority voting. The dimensionality of the feature 
set was quantified as the total number of ones in the chromosome, 
representing the selected features.

3.4.3. Step 3: Genetic operations
In the third step, the NSGA-II performed a binary tournament 

selection to choose pairs of chromosomes for crossover and mutation. 
For crossover, parents with the better fitness scores were selected, 
and a new child (chromosome) was created by using single-point and 
multi-point crossover, where genes were swapped between parents to 
produce new combinations. For mutation, two individuals were chosen 
at random, and the one with the best fitness was selected as a parent. 
This parent produced a new chromosome by randomly changing some 
of its genes. The probability of mutation was predefined, ensuring 
variety within the population.

3.4.4. Step 4: Generation iterations
The new generation was evaluated again by the NSGA-II following 

the previously described procedure. This cycle was repeated for 30 
generations. At the conclusion of the 30th generation, the chromosome 
with the highest fitness score was selected as the optimal feature set 
for the corresponding bootstrap sample.
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3.4.5. Outcome: Micro-step candidate feature sets
After executing the genetic algorithm on each bootstrap sample, the 

micro-step yielded three optimal feature sets [𝐹1, 𝐹2, 𝐹3], as:
𝐷1

𝐷2

𝐷3

𝐹1

𝐹2

𝐹3

3.5. Macro-step genetic algorithm

In the macro-step, the three feature sets obtained for each bootstrap 
sample in the micro-step were combined to further identify an optimal 
feature set, 𝐹𝑚𝑎𝑐𝑟𝑜. Two different strategies were considered for com-
bining these three feature sets (𝐹1, 𝐹2, and 𝐹3): bitwise union and the 
bitwise median.

The union operator was applied for each feature across the three 
feature sets, resulting in 1 when at least that feature was selected in 
any of the feature sets. On the other hand, the median operator only 
selected a feature if at least two feature sets selected that feature. The 
union operator allowed more candidates to be kept from the feature 
set, whereas the median focused more on selecting features that were 
more consistent across all three candidate feature sets. Regardless of 
the operator, the macro-step aggregated the micro outputs as:

𝐹1

𝐹2

𝐹3

𝐹macro 𝐹𝑍

Then, 𝐹𝑚𝑎𝑐𝑟𝑜 was passed through the same four steps of the genetic 
algorithm with a new bootstrap sample to find the final feature set, 𝐹𝑧. 
Like the micro-step, in the macro-step, the GA found 𝐹𝑧 by maximizing 
the F1 score and minimizing the dimensionality of the final feature set.

3.6. Train final model

The optimal feature set 𝐹𝑍 , identified by the micro–macro hierar-
chical algorithm, was used to train a final ensemble model using the 
training dataset. This final model was then evaluated on the test data, 
which had been kept separate during the micro–macro steps.

4. Experiments

To evaluate the performance of our method, we conducted ex-
periments on twelve different datasets. We compared our proposed 
GA-based feature selection approach with three widely used filter meth-
ods: chi-square, mutual information, and mRMR. To promote adoption 
and reproducibility in practical machine learning applications, we have 
also made our GA-based method available as an open-source Python 
library, feature-gen (Felahatpisheh et al., 2025).

4.1. Datasets

Table  1 presents the datasets used in this study, spanning diverse 
domains such as healthcare, finance, video games, and biology. These 
datasets include both binary and multi-class classification scenarios, 
with varying numbers of features, instances, and class distributions. The 
diversity of these datasets allows for a comprehensive evaluation of the 
NSGA-II algorithm to balance our two objectives: maximizing classifi-
cation performance while minimizing the feature set size. Furthermore, 
this varied dataset collection provided a robust framework for assessing 
the algorithm’s scalability, adaptability, and generalizability across 
different contexts.

For all datasets, rows with missing or undefined values were re-
moved to maintain data quality and avoid errors in processing. Addi-
tionally, we dropped rows with positive and negative infinity values.
4 
Table 1
Details of the datasets used in the experiments.
 Dataset Dataset ID Number of 

features
Number of 
classes

Number 
of 
instances

 

 Covertype CT 54 7 581,012  
 Mushrooms MR 22 2 8124  
 Spambase SB 57 2 4601  
 Nursery NU 8 5 12,960  
 Connect-4 opening C4 42 3 67,557  
 Waveform WF 21 3 5000  
 Financial FI 3 2 17,108  
 Pima indian 
diabetes

PM 8 2 768  

 Breast cancer BC 9 2 699  
 Ionosphere IO 34 2 351  
 Wisconsin breast 
cancer

WBC 30 2 569  

 Musk (Version 2) MU 168 2 6598  

4.2. Micro–macro approach performance

For each dataset, we compared the performance obtained using the 
original feature set with that provided by our micro–macro algorithm. 
The only transformation applied to the original feature set was one-hot 
encoding for categorical variables, as machine learning models require 
numerical inputs. To evaluate performance, we used accuracy and F1 
score, with the latter providing a less biased metric for imbalanced 
data. Additionally, we measured feature reduction by comparing the 
original and final feature sets. This evaluation was conducted using the 
two macro-step strategies: the union and median operators.

4.2.1. Comparison with filter feature selection methods
We also compared our macro–micro method with three common 

filter feature selection methods. These three methods were chi-square, 
mutual information, and mRMR methods. To ensure consistency and a 
fair comparison, we trained an ensemble model for each dataset using 
the same training set used for the macro–micro approach. Moreover, 
similar to the original dataset, the only transformation applied in the 
filter-based method was one-hot encoding for the categorical variables. 
The 20%, 30%, and 50% top features provided by the chi-square, 
mutual information, and mRMR were selected, and the final accuracy 
was calculated on the test set.

4.3. The feature-gen library

The micro–macro approach was implemented in a publicly acces-
sible library named feature-gen. The feature-gen library is a Python-
based tool that simplifies feature engineering for classification tasks. 
With a user-friendly API, it enables users to define their dataset, target 
column, and desired ensemble methods while providing full control 
over configuration parameters such as the number of generations, 
population size, and optimization settings. The feature-gen library is 
available on the PyPI repository (Felahatpisheh et al., 2025).

5. Results

This section presents the results obtained from evaluating our 
Micro–Macro Approach on twelve datasets (see Table  1). The most 
frequently selected feature transformations by the approach are also 
reported. Finally, a comparison with traditional filter-based feature 
selection methods is provided.
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Fig. 2. Trade-off between F1 score and the number of feature variations for the union operator (blue line) and median operator (red line).
Table 2
Performance of the ensemble model composed of logistic regression, SVM, and XGBoost 
using all the original features on the twelve datasets. For each dataset, accuracy, F1 
score, and feature count are reported. Categorical features were transformed using one-
hot encoding.
 Dataset Train samples Test samples Accuracy F1 score No. of features 
 CT 464,809 116,203 77.2 52.2 54  
 MR 6499 1625 55.1 47.4 112  
 SB 3680 921 94.1 93.8 57  
 NU 9823 2456 94.1 74.4 27  
 C4 54,045 13,512 78.7 54.2 126  
 WF 4000 1000 83.9 83.8 21  
 FI 8000 2000 97.3 69.7 3  
 PM 614 154 63.6 59.4 1262  
 BC 559 140 96.4 96.1 20  
 IO 280 71 91.5 90.4 34  
 WBC 455 114 98.2 98.1 31  
 MU 5278 1320 99.1 98.2 6866  
 Average 46,504 11,626 85.8 76.5 717.8  

5.1. Micro–macro approach performance

Table  2 presents the performance of the ensemble model using the 
original feature sets, while Tables  3 and 4 show the results of the micro–
macro approach with the union and median operators, respectively. 
With the union operator, the accuracy and F1 score improved by 
1.4% and 1.5%, respectively, across the 12 datasets. However, this 
improvement came at the cost of a 2.1% increase in average feature 
dimensionality. In contrast, the median operator not only achieved 
a slightly higher average predictive performance increase (1.6%) but 
also significantly reduced the average feature dimensionality by 54.5%. 
This highlights the median operator’s ability to balance predictive 
performance and feature reduction effectively.

Fig.  2 shows the relationship between the F1 score and the number 
of feature variations achieved by the micro–macro approach. Both 
methods exhibited a positive trend, showing that an increase in the 
number of features increased the F1 score. However, the trend line 
indicates that reducing the number of features by 1% to 70% did not 
significantly affect the F1 score. In fact, within this range, the F1 score 
variation was positive for most of the tested datasets.

5.1.1. Feature transformations
Tables  5 and 6 present the percentage of features selected for each 

transformation. For the union operator, the logarithmic transformation 
5 
Fig. 3. Average rankings across 12 datasets based on F1 scores, comparing the micro–
macro approaches (orange bars) with filter-based feature selection methods (blue bars), 
including Chi-square, Mutual Information, and mRMR.

was the most frequently selected, followed by the cubic power and 
sigmoid transformations. For the median operator, the quadratic power 
transformation was the most effective, followed by the sigmoid and 
cubic power transformations. For datasets containing only categorical 
variables (FI, C4, PM, MR, and NU), no transformations were selected 
as the transformations were only applied to numerical variables. The 
datasets WBC, SB, and WF used the highest proportion of transformed 
features, with less than 12% of the original features (NT) selected.

5.1.2. Comparison with traditional feature selection methods
Tables  7, 8, 9 present the accuracy and F1 score performance 

across 12 datasets for the chi-square, mutual information, and mRMR 
filtering methods, each selecting the top 20%, 30%, and 50% of the 
features. All three methods achieved strong classification results, with 
average accuracy exceeding 82% and F1 scores surpassing 72%. The 
50th percentile consistently delivered the best performance, indicating 
that retaining half of the features produced an optimal balance between 
performance and dimensionality reduction.

Fig.  3 shows the average rankings based on F1 scores for the 
micro–macro algorithm compared to nine filter-based feature selec-
tion methods. The micro–macro approach using the union operator 
achieved the highest overall ranking across the 12 benchmark datasets. 



A. Gulati et al. Machine Learning with Applications 21 (2025) 100696 
Table 3
Performance of the GA-based hierarchical micro–macro approach across 12 datasets using the union operator 
in the macro step and an ensemble model composed of logistic regression, SVM, and XGBoost. For each 
dataset, accuracy, F1 score, and feature count are reported. The last three columns show variations compared 
to the results obtained using the original features (Table  2).
 Dataset Micro-Macro, Union operator Accuracy F1 No. feature  
 Accuracy F1 score No. features variation (%) variation(%) variation(%) 
 CT 77.9 57.9 163 1.0 10.9 201.9  
 MR 65.4 61.0 11 18.6 28.8 −90.2  
 SB 94.7 94.4 108 0.6 0.7 89.5  
 NU 92.5 85.1 10 −1.7 14.4 −63.0  
 C4 76.7 51.5 36 −2.4 −4.9 −71.4  
 WF 83.4 57.7 30 −0.6 −31.1 42.9  
 FI 97.2 71.6 2 −0.10 2.69 −33.3  
 PM 61.7 53.4 404 −3.1 −10.1 −68.0  
 BC 97.1 96.9 15 0.7 0.8 −25.0  
 IO 95.8 95.3 42 4.6 5.5 23.5  
 WBC 97.4 97.1 60 −0.9 −1.0 93.5  
 MU 99.7 99.4 1739 0.6 1.2 −74.7  

 Average 86.6 76.8 218.3 1.4 1.5 2.1  

Table 4
Performance of the GA-based hierarchical micro–macro approach across 12 datasets using the median 
operator in the macro step and an ensemble model composed of logistic regression, SVM, and XGBoost. For 
each dataset, accuracy, F1 score, and feature count are reported. The last three columns show variations 
compared to the results obtained using the original features (Table  2).
 Dataset Micro-Macro, Median operator Accuracy F1 No. feature  
 Accuracy F1 score No. features variation (%) variation(%) variation(%) 
 CT 77.8 56.4 62 0.8 8.0 14.8  
 MR 63.8 52.9 9 15.6 11.7 −92.0  
 SB 93.4 93.1 58 −0.8 0.8 1.8  
 NU 92.3 84.9 10 −2.0 14.2 −63.0  
 C4 76.7 51.5 36 −2.4 −4.9 −71.4  
 WF 82.5 82.5 21 −1.7 −1.6 0.0  
 FI 97.2 71.6 2 −0.1 2.7 −50.0  
 PM 60.4 50.4 199 −5.1 −15.0 −84.2  
 BC 95.7 95.2 5 −0.7 −0.9 −75.0  
 IO 95.8 95.2 7 4.6 5.4 −79.4  
 WBC 97.4 97.1 6 −0.9 −1.0 −80.6  
 MU 99.7 99.4 1739 0.6 1.3 −74.7  
 Average 86.0 77.5 179.5 0.7 1.6 −54.5  
Table 5
Percentage of features selected by each of the seven transformations and the original 
features (NT: no transformation) from the feature set produced by the micro–macro 
approach using union operator. The last row shows the average across 12 datasets.
 Dataset Union operator for macro step
 Quadratic Cubic log Square root Cubic root tanh Sigmoid NT  
 CT 9.2 14.7 15.3 11.0 14.1 11.7 11.7 12.3  
 MR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 SB 13.0 9.3 13.9 13.0 13.0 17.6 9.3 11.1  
 NU 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 C4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 WF 3.3 6.7 20.0 13.3 20.0 13.3 13.3 10.0  
 FI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 BC 20.0 13.3 6.7 6.7 0.0 6.7 13.3 33.3  
 IO 9.5 11.9 21.4 9.5 11.9 9.5 16.7 9.5  
 WBC 11.7 21.7 11.7 15.0 6.7 15.0 10.0 8.3  
 MU 2.5 2.5 2.4 2.5 2.6 2.2 1.8 83.4  
 Average 5.8 6.7 7.6 5.9 5.7 6.3 6.3 55.7  

Similarly, the variant employing the median operator performed com-
petitively, securing third place among all methods evaluated. Among 
the filter-based techniques, the mRMR method, when selecting the top 
50% of features, demonstrated the best performance in its category, 
ranking second overall.

6. Discussion

Our results indicate that the micro–macro genetic algorithm ap-
proach can find a feature set that maximizes classification performance 
6 
Table 6
Percentage of features selected by each of the seven transformations and the original 
features (NT: no transformation) from the feature set produced by the micro–macro 
approach using median operator. The last row shows the average across 12 datasets.
 Dataset Median operator for macro step
 Quadratic Cubic log Square root Cubic root tanh Sigmoid NT  
 CT 16.1 6.5 16.1 14.5 11.3 06.5 17.7 11.3  
 MR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 SB 13.8 13.8 20.7 19.0 12.1 10.3 5.2 5.2  
 NU 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 C4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 WF 9.5 14.3 0.0 9.5 4.8 28.6 23.8 9.5  
 FI 50.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0  
 PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
 BC 20.0 20.0 0.0 0.0 0.0 0.0 0.0 60.0  
 IO 28.6 14.3 0.0 0.0 14.3 14.3 14.3 14.3  
 WBC 16.7 16.7 0.0 16.7 16.7 0.0 33.3 0.0  
 MU 2.5 2.5 2.4 2.5 2.6 2.2 1.8 83.4  
 Average 13.1 7.3 3.3 5.2 5.1 5.2 8.0 52.8  

while minimizing the number of selected features. By employing a boot-
strapping strategy, the approach can simultaneously identify candidate 
feature sets across different samples through the genetic algorithm, 
which are subsequently aggregated and refined during the macro step. 
Notably, our approach can enhance F1 score performance, which is a 
critical indicator for handling imbalanced datasets, tackling a prevalent 
challenge in machine learning. This improvement occurs alongside a 
reduction in the number of features, thereby supporting interpretabil-
ity, as a smaller feature set makes it easier to understand how input 
variables influence predictions.
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Table 7
Accuracy and F1 score performance across the 12 datasets for the ANOVA F-value 
filtering method, selecting the top 20%, 30%, and 50% of the features.
 Dataset ANOVA F-value
 Percentile 20 Percentile 30 Percentile 50
 Accuracy F1 Accuracy F1 Accuracy F1  
 CT 70.9 47.1 73.0 45.1 75.6 50.2 
 MR 64.1 56.2 64.8 62.4 59.9 52.6 
 SB 89.3 88.6 89.1 88.5 91.5 91.1 
 NU 81.8 62.0 86.6 65.8 91.5 83.9 
 C4 74.6 47.7 75.4 49.1 77.5 52.6 
 WF 66.0 64.9 70.4 69.5 78.0 77.8 
 FI 97.2 68.2 97.3 70.6 97.2 71.6 
 PM 58.4 48.4 64.3 58.6 67.5 64.4 
 BC 95.0 94.5 95.0 94.5 95.7 95.3 
 IO 97.2 96.9 94.4 93.8 98.6 98.4 
 WBC 96.5 96.1 97.4 97.2 97.4 97.1 
 MU 97.7 95.3 98.3 96.5 98.7 97.4 
 Average 82.4 72.2 83.8 74.3 85.8 77.7 

Table 8
Accuracy and F1 score performance across the 12 datasets for the mutual information 
filtering method, selecting the top 20%, 30%, and 50% of the features.
 Dataset Mutual information
 Percentile 20 Percentile 30 Percentile 50
 Accuracy F1 Accuracy F1 Accuracy F1  
 CT 72.5 40.9 73.9 46.1 77.2 50.5 
 MR 64.9 56.1 63.1 57.5 58.7 51.7 
 SB 92.2 91.8 92.2 91.6 91.9 91.3  
 NU 81.7 61.9 86.6 65.8 86.9 69.6 
 C4 73.5 47.0 74.6 47.9 77.5 52.5 
 WF 65.9 65.0 70.4 69.5 79.3 79.3 
 FI 97.2 68.2 97.2 68.2 97.3 69.7 
 PM 64.3 55.9 63.6 52.7 63.0 56.6 
 BC 95.0 94.5 95.7 95.3 95.7 95.3 
 IO 91.5 90.4 94.4 93.8 97.2 96.9 
 WBC 96.5 96.1 97.4 97.2 97.4 97.1 
 MU 99.3 98.7 99.3 99.1 99.9 99.9 
 Average 82.9 72.2 84.0 73.7 85.2 75.9 

Table 9
Accuracy and F1 score performance across the 12 datasets for the mRMR filtering 
method, selecting the top 20%, 30%, and 50% of the features.
 Dataset mRMR

 Percentile 20 Percentile 30 Percentile 50
 Accuracy F1 Accuracy F1 Accuracy F1  
 CT 72.3 42.0 74.0 47.0 75.9 51.4 
 MR 63.7 61.8 62.3 56.9 58.8 51.2 
 SB 92.3 91.9 92.9 92.6 93.6 93.2 
 NU 80.8 61.3 85.2 64.7 91.4 70.9 
 C4 71.8 44.4 74.4 47.5 75.9 50.5 
 WF 76.8 76.7 79.2 79.1 80.9 80.9 
 FI 97.2 70.7 97.2 70.7 97.2 71.6 
 PM 60.4 43.0 63.6 52.7 63.0 60.7 
 BC 95.7 95.3 95.0 94.5 95.7 95.3 
 IO 97.2 96.9 94.4 93.8 97.2 96.9 
 WBC 97.4 97.1 95.6 95.2 97.4 97.1 
 MU 98.9 97.9 99.5 99.1 99.6 99.3 
 Average 82.9 72.2 84.0 73.7 85.2 75.9 

The choice between union and median operator for the aggregation 
in the macro-step offers a trade-off between performance boost and 
feature reduction. The union operator retains more features, leading to 
a higher performance score but a lower feature reduction. In fact, using 
the union operator as the macro step increased the average number of 
features across the datasets. On the other hand, the median operation 
ensures the consideration of only those features shown to be relevant 
in at least two of the bootstrap samples of the micro-step, thus ensuring 
the inclusion of critical features in the last step. This selective inclusion 
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allowed for a reduction in the number of features but slightly decreased 
the performance score compared to the union operator.

As a practical contribution, our results suggest that applying trans-
formations such as sigmoid and quadratic improves model perfor-
mance. The reason behind this improvement is the capacity of the 
transformations to capture data relationships that are not noticeable in 
the original feature space. This is particularly true for complex datasets, 
where such transformations can better represent nonlinear patterns and 
interactions, leading to a higher predictive score.

Regarding filter-based feature selection methods, the micro–macro 
genetic algorithm approach demonstrated superior performance in 
most cases. The enhanced performance of our proposed approach can 
be attributed to its ability to effectively balance competing objectives, 
making it well-suited for diverse datasets and domains. Moreover, un-
like traditional filtering methods, in which the user needs to specify the 
percentile number of features to select, our approach can optimize this 
by itself, avoiding the necessity of tuning additional hyperparameters 
during the training process.

Overall, the proposed hierarchical genetic algorithm framework 
contributes by offering an approach that automates feature selection 
and engineering. The results indicate that the framework delivers com-
parable or superior performance to traditional feature selection meth-
ods by effectively integrating genetic algorithms, ensemble learning, 
and feature transformations. Additionally, the reduced feature set sup-
ports machine learning model interpretability, addressing the growing 
need for explainability in predictive modeling.

6.1. Comparison with previous works

Similar to previous studies (Li et al., 2017; Shi & Saad, 2023; Zhang 
& Yang, 2008), our approach highlights the role of feature transforma-
tions in capturing nonlinear patterns. However, unlike previous studies, 
we showed the effectiveness of these feature transformations for multi-
objective optimization settings. Our work also supports the findings 
of Kiziloz (2021), demonstrating that leveraging ensemble methods is 
more reliable for feature selection than traditional filtering methods. 
Specifically, the use of ensemble learning with Logistic Regression, 
SVM, and XGBoost ensures broad applicability across linear, boundary-
based, and nonlinear problems. However, in contrast to Kiziloz (2021), 
we extended the approach by incorporating an ensemble classifier into 
a two-level hierarchical algorithm to optimize two goals: performance 
and feature reduction. This extension enables the reduction of the 
feature set’s dimensionality without sacrificing accuracy.

In comparison to Rostami et al. (2021) and Wang et al. (2020) that 
also used the NSGA-II to optimize two objectives, we extended their 
work by performing the procedure multiple times through bootstrap-
ping. This statistical technique allowed us to expose the NSGA-II to 
different configurations of the training data, thus exploring more dif-
ferent feature combinations. These combinations were then combined 
(‘macro-step’), thus allowing the exploitation of these candidate feature 
sets to derive an optimal feature set.

To the best of our knowledge, our approach is the first to expand the 
original with nonlinear transformations, thus enabling the projection 
of the features on alternative spaces in which class prediction can 
be enhanced. Indeed, our results indicated that the optimal solution 
generated by our macro–micro approach selected, on average, 45% of 
nonlinear transformed features (see Table  5). Thus, this finding suggests 
that incorporating nonlinear features into traditional machine learning 
models can significantly enhance their performance.

6.2. Limitations and future work

We note that our micro–macro genetic algorithm was implemented 
specifically for classification problems using tabular data. We did not 
evaluate its applicability to regression problems and non-structured 
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data, such as text, images, or signals. However, the methodology pre-
sented here could be adapted to other types of data and regression tasks 
by modifying the objectives of the NSGA-II algorithm. Future research 
should explore the potential of the micro–macro genetic algorithm for 
regression problems to evaluate its feasibility and effectiveness.

Additionally, we note that the iterative nature of the micro–macro 
genetic algorithm requires computational resources, which may limit 
its scalability to very large datasets. This condition could be addressed 
by extending the computational framework to support distributed sys-
tems. The distributed system would introduce load balancing and task 
scheduling mechanisms, ensuring efficient utilization of computational 
resources.

As feature distributions vary across datasets, we recognize that a 
predefined set of seven transformations may not be optimal for all 
scenarios. Additionally, we applied transformations only to numerical 
features, without exploring transformation options for categorical fea-
tures. Future work should explore transformation methods that adapt 
to the unique characteristics of each dataset, potentially developing 
mechanisms to analyze feature distributions and relationships to select 
the most appropriate transformation.

7. Conclusion

This paper presents a two-level hierarchical genetic algorithm for 
feature selection, aiming to maximize classification performance while 
minimizing the number of selected features. This proposed method 
introduces three key contributions: (1) the integration of repeated 
bootstrapping with feature transformations to enhance robustness and 
solution diversity, (2) the application of NSGA-II for effective multi-
objective optimization, balancing accuracy and interpretability, and (3) 
the provision of an open-source Python library (Felahatpisheh et al., 
2025), enabling reproducibility and practical application in real-world 
scenarios.

Our approach achieves performance comparable to or surpassing 
traditional feature selection techniques, highlighting its robustness and 
versatility as a feature engineering tool. However, the computational 
costs associated with bootstrapping and genetic operations remain a 
constraint, particularly for large-scale or extremely high-dimensional 
datasets. To address these challenges, future research should explore 
alternative evolutionary operators to enhance efficiency, investigate 
real-time feature adaptation for streaming contexts, and further op-
timize scalability. Additionally, benchmarking the algorithm across 
diverse domains will help solidify its position within the field and guide 
subsequent advancements.
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